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On the variational derivation of  boundary value problems
in the dynamics of  structural elements

Ricardo Oscar Grossi

Summary

The calculus of  variations is an old branch of  mathematical analysis concerned with the problem of

extremizing functionals, a generalization of  the problem of  finding extremes of  functions of  several

variables. This discipline has a long history of  interaction with other fields of  mathematics and physics,

particularly with mechanics. Engineers and applied mathematicians have increasingly used the techniques

of calculus of  variations to solve a large number of problems. Nevertheless, in this discipline the «operator»

  has been assigned special properties and handled using heuristic procedures. A mechanical «  -method»

has been developed and extensively used, as can be observed in the current engineering literature.

The objective of  this paper is to present a rigorous formalism for the determination of  boundary value

problems which describe the static or dynamic behavior of  structural elements.  A discussion about the

shortcomings of  the use of  the vague mechanical  -method is presented.

Keywords: Variational calculus-rigorous formalism- functional-admissible directions

1. Introduction

The calculus of  variations is a branch of

mathematics concerned with extreme values in

certain function spaces. It determines necessary

conditions for a class of functions in order to

extremize a given functional. These conditions

are formulated in terms of  ordinary differential

equation or partial differential equations,

boundary conditions and transition conditions.

For centuries scientists have tried to formulate

laws of  natural sciences as extreme problems and

called these laws variational principles. For this

reason, in solid mechanics, the principle of  vir-

tual work and the Hamilton’s principle provide

straightforward methods for determining the

differential equations of equilibrium and motion,

boundary conditions and transition conditions.

It is well known that there are two basic

approaches to deriving the equations of  motion
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of  a mechanical system. One approach uses

Newton’s laws through an establishment of  all

the forces and moments in the system. The other

is based on the application of  Hamilton’s

principle. For complicated mechanical systems,

the first procedure becomes intractable, and it is

difficult to determine the type of  boundary

conditions and / or transitions conditions to be

used in conjunction with the derived differential

equations. On the other hand, the variational

approach is very straightforward since variations

of the kinetic and potential energies are utilized.

This is one of  the reasons why engineers,

physicists and applied mathematicians are

increasingly using techniques of  calculus of

variations to solve a large number of  problems.

The applications of  this discipline now embrace

a great variety of  fields. The calculus of  variations

and the optimal control theory are widely used

in biology, economics, astronautics, quantum

mechanics, finance, etc. Nevertheless, calculus

ofvariations is a discipline in which the «operator»
  has been assigned special properties not analyzed

in the rigorous formalism of  mathematics and a

mechanical «  -method» has been developed and

extensively used.

Diverse opinions regarding the role of

applied mathematics have been expressed and

one approach is based on the use of  pure

mathematics with the field of application as an

extension occupying a secondary role. Never-

theless, it is obvious that generally, the applied

mathematician does not need to know concepts

and theories as much as the pure mathematician

does, but he should have good training in basic

pure mathematics and should know the

foundations of  the relevant mathematical tools

he is using in the solution of  his problems, which

have often emerged from real-world situations.

It is not true that the mathematical theory needed

by applied mathematicians is remote from the

urgent problems that arise in various fields of

engineering and applied science. Professor

Richard Courant [1] remarked: «Pure

mathematicians sometimes are satisfied with

showing that the non-existence of  a solution

implies a logical contradiction, while engineers

might consider a numerical result as the only

reasonable goal. Such one sided views seem to

reflect human limitation rather than objective

values. In itself  mathematics is an indivisible

organism uniting theoretical contemplation and

active application».

In calculus, real valued functions defined on

certain subsets of  the n -dimensional Euclidean

space n , are used. The determination of  extre-

me values of  a function : ,f D    ,nD  

is concerned with finding elements of  D  with

which the smallest (largest) value of  f  is

associated. A decisive role in the optimization of

this type of  functions is played by its partial

derivatives or more generally by its directional

derivatives. It is commonly accepted that the

concept of  functional is a natural generalization

of  the concept of  function given in elementary

calculus. Since the calculus of  variations is

concerned with the problem of  extremizing

functionals, it is natural to consider this problem

as a generalization of  the problem of  finding

extremes of  real valued functions of  several va-

riables.  While it might seem that the introduction

of the concept of  variation of a functional should

be subsumed into the mentioned rigorous

procedure, this is not the case. Thus, a number

of books and papers have been published dealing

with the calculus of  variations and particularly

with the definition of  variation of  a functional,

from a heuristic point of  view. For this purpose,

a vague and obscure procedure based on an

analogy between the variational operator   and
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the differential operator d  of functions is adopted.

It is true that since the calculus of  variations

has called the attention of  several mathematicians,

who made important contributions to its

development, there are many technical details

which are hardly available to a non-mathema-

tician. But fortunately, it is possible to present a

minimal set of  basic concepts of  this discipline,

using only certain abstractions of  what are

considered to be simple ideas from elementary

calculus. In this aspect, the elementary functional

analysis provides a much better and deeper

understanding of  the fundamental concepts of:

variation of  a functional, space of  admissible functions,

space of  admissible directions, and weak and strong lo-

cal extremes.

Professor Magnus Hestenes claimed that

«there is no discipline in which more correct

results can be obtained by incorrect means than

in the calculus of  variations», [2]. This dictum of

a prestigious specialist emphasizes the importance

of  the use of  rigorous formalisms, rather than

obscure heuristic definitions.

The primary purpose of  this paper is to make

a small contribution toward reducing the gap

between the abundance of  concepts and methods

available in abstract calculus of  variations and

their limited use in various areas of  vibrations of

structures. For this purpose, a rigorous procedure

for the determination of  boundary value

problems, which describe the statical or dynamical

behavior of  a common structural element, is

discussed.

Substantial literature has been devoted to the

formulation - by means of  the calculus of

variations - of  boundary value problems in the

statics and dynamics of  mechanical systems. It is

not the intention to review the literature;

consequently, only some of  the relevant works

will be cited. A number of  textbooks, [3-13] deal

with the classical variational calculus and others,

[14-24] include rigorous treatments of  the

theoretical aspects of  this discipline. Several

textbooks, [25-30] also present formulations, by

means of  variational techniques, of  boundary

value problems in the statics and dynamics of

beams, frames and plates.

A secondary purpose of  this paper is to

present a rigorous variational formulation to de-

termine the boundary value problems which des-

cribe the dynamical behavior of  a freely vibrating

beam. For this purpose, the construction of  the

domain and space of  admissible directions, which

corresponds to the variation of  the functional

which in mechanics is called action integral is

included.  In addition, the presence of some

errors in the literature, and particularly in the

formulation of  fundamental lemma of  the

calculus of  variations is also demonstrated.

This paper is organized  in the following way.

In Section 2 some basic concepts are treated. In

Section 3 a discussion about the concept of

variation of  a functional, which covers both the

heuristic and the rigorous form, is included. In

Section 4 the Hamilton’s principle is rigorously

stated in the case of a freely vibrating beam.

Finally, Section 5 contains the conclusions of  this

paper.

2. Some basic topics

It is commonly accepted that the concept

of  functional is a generalization of  that of  a real

function of  real variable and the following

rigorous definition can be found even in

engineering textbooks.

Definition 1. Let D  be a subset of a li-

near space .V  A mapping which assigns to eachh

element of  D  exactly one real number is called a

functional defined in ,D  and it is denoted byy
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: .I D    A typical example is

                                                              (1)

defined in 1[ , ],C a b  the space of  all real valued

functions with a continuous derivative on the

interval [ , ].a b

Remark 1. Definition 1 illustrates the

point of  view of  the functional analysis. In

calculus, the notion of  a real valued function of

a real variable is associated with the real numbers

which constitute its values, but the functional

analysis view is that it defines a correspondence

between pairs of  elements of  prescribed sets. The

concepts of  linear or vectorial space and normed space

are rather intuitive and can be presented as natu-

ral generalizations of  the corresponding

definitions in the Euclidean space 
n . These

generalized notions are applied throughout

mathematics, science and engineering [23], [31],

[32].

3. The first variation of  a functional
3.1 Heuristic development

As stated above, a number of  books and

papers have appeared which treat the calculus of

variations from a heuristic point of  view using a

vague and obscure procedure based on an analogy

between the variational operator   and the

differential operator d  of  functions. The

following statements have been compiled from

some textbooks included in the reference list:

In the calculus of  variations it is a common

practice to use u  to denote what is defined as

the first variation of  the function ,u  which is given

by

                                                              (2)

where   is a small arbitrary real number and v

an arbitrary function. Thus u  is considered as

an operator that changes from the function u
into .u  The derivatives are changed in the same

form. For instance, /du dx  is changed into

                                                              (3)

The variational operator can be interchanged

with derivatives and integrals. For instance,

                                                               (4)

In analogy with the concept of  total

differential dF  of  a real function of  several va-

riables  , ,F F x y z  given byy

the variational operator   acts like the total

differential defined above. In consequence, the

first variation of   , ,F F x u u   is defined byy

                                                            (5)

Finally, in the case of  the functional given

by (1), the use of  property (4) leads to

                                                             (6)

,
F F F

dF dx dy dz
x y z

  
  
  

      , , ,
b

a
I u F x u x u x dx 

,u v 

.
du dv

dx dx
 
      

.Fdx Fdx 
 

 

.
F F

F u u
u u

  
 

 
 

   , , .
b

a
I u F x u u dx   
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3.2. Rigorous definitions

Within reasonable limits, the arguments from the extreme values theory of  real valued functions

of  several variables, find their counterpart in the theory of  extremes values of  functionals. Thus, the

concept of  the variation of  a functional can be easily stated as a generalization of  the definition of

the directional derivative of  a real valued function defined on a subset of  .n  This procedure should

be the key to eliminate the lengthy and obscure definition of  the variation of  a functional using the

Eqs. (2) to (6). Let us recall the definition of  directional derivative:

Suppose we are given a real valued function :f S    defined on a set .nS    If   x  is an

interior point of  S  and 
nv   an arbitrary vector of  unit length  1 ,v  then  the directional

derivative of  f  at x  in the direction v  is given byy

if  this limit exists.

If  I  is a functional defined in a subset D  of  a vectorial space ,V  its directional derivative (called

variation) is easily furnished by a straightforward generalization of  the above definition of  directional

derivative of  a function.

Definition 2. Let I  be a functional defined in a subset D of  a vectorial space .V  If   u D  and

,v V  the variation of   I  in the point u  and in the direction ,v  is given byy

                                                                                                                                               (7)

when the ordinary derivative with respect to the real variable   exists at 0. 
Since the application of  (7) requires deriving with respect to   under the integral sign, in the

case of  the functional defined by (1) we should require that the function  , ,F F x u w  has

continuous partial derivatives and 1 , ,u C a b     ; then, we havee

                                                                                                                                                   (8)

 
0

( ) ( )
, lim ,

f f
f







 
 

x v x
x v

 
   

 
0

0

; lim ,
I u v I u dI

I u v u v
d




 

 


 
  

 
          

          

          

             

0

0

; , ,

, ,

, ,

, , , , .

b

a

b

a

b

a

I u v F x u x v x u x v x dx

F
x u x v x u x v x v x

u

F
x u x v x u x v x v x dx

w

F F
x u x u x v x x u x u x v x dx

u w






  




 




 



 

 





    


     

      
         






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The above is well known, at least heuristically,

to anyone who works in the field of  calculus of

variations.

3.3 Admissible directions

In definition 2, it can be noted that element
,v  which generalizes the concept of  direction,

is simply an element of  the vector space .V  It

plays an essential role in the minimization of  a

functional. In this process we are interested in

those functions u  and directions ,v  in which the

variation of  I  exists. For instance, if  we want to

find a function 1 ,u C a b      so that the functional

(1) assumes a minimum where by

                                                                    (9)

are given, we are not interested in all functions
1 ,u C a b      but only in those which satisfy the

conditions (9). On the other hand, we are

interested in considering for each 1 ,u C a b    
those directions v V  in which the functional

I admits the variation  ;I u v  as is stated in the

following definition.

Definition 3.  A direction v V  is

admissible if:

 i  ,u v D     sufficiently small,

 ii   ;I u v  exists..

The space of  admissible directions is

commonly denoted by .
a
D

Remark 2.  It must be noted that there is

no need to introduce the concept of  variation u
of  the actual configuration u  which usually is

presented in the following form:

«Suppose  u x  is indeed the function of x

which gives (1) a minimum value, and  u x  is a

second function of  x  which is at most infinitesimally

different from  u x  at every point x  within the

interval , .a b     Define

The variation of  a function should be

understood to represent an infinitesimal change

in the function u  at a given value of   .x  The

change is arbitrary; that is, it is a virtual change.»

This lengthy and obscure definition should

be avoided because while no advantage is taken

of  its use, a source of  confusion is eliminated.

Although it is an ordinary function, in mechanics,

it is traditional to denote by u  an admissible

virtual displacement of  ,u . It is particularly used

in the powerful virtual work principle [24].

3.4 Necessary condition for an extreme

When a real valued function :f S  

defined on a set ,nS    has a local extremal

point S
0
x  in which f  has continuous partial

derivatives, then

for each vector nv   of  unit length. In the

context of  functionals, the following theorem can

be demonstrated. See for instance, references

[18], [19].

Theorem 1. Let  ,V   be a normed space

and : ,I D    where .D V  If the functional
I  assumes a local extremum at 

0
u D , then

                                                               (10)

Remark 3.  It must be noted that the

condition (10) requires the use of all admissible

directions and generally there may be enough

 0
, 0, .

a
I u v v D   

 0
, 0,f  x v

     .u x u x u x  

  , ,u a A u b B  , ,u a A u b B 
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directions to permit this condition to determine the function 
0
.u  This is consistent with the funda-

mental lemma which must be applied to obtain a more useful condition than (10).

The fundamental lemma

If  ,F C a b      and     0,
b

a
F x v x dx   for any y arbitrary continuous function ,v which verifies

    0v a v b   for all  ,x a b , then 0F   on  , .a b

4. The Euler-Lagrange equation
4.1 Heuristic development

The following statements have been compiled from some textbooks of  the reference list:

«The necessary condition for the functional    , , ,
b

a
I u F x u u dx   to have a minimum is

0I  , so we havee

                               (11)

Since we cannot use the fundamental lemma because (11) is not in the adequate form, we integrate

the second term by parts and obtain

0.

b
b b

a a
a

F F F d F F
u u dx udx u

u u u dx u u

    
   

    

                           
                                                                                                                               (12)

In the case of  fixed ends all admissible variations must satisfy the conditions:     0,u a u b  

then (12) reduces to

                                                                       in

(13)

In consequence, if  the fundamental lemma is applied to (13) with ,v u  we obtain

(14)

0,
b

a

F d F
udx u

u dx u

 
 

 

               


 0, , .
F d F

x a b
u dx u

 

 

         

0.
b

a

F F
I u u dx

u u

 
  

 

        


 , .a b
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4.2 Rigorous formalism

Instead of  the functional of  the preceding discussions, let us consider the more interesting

functional which corresponds to a freely vibrating beam.

Let us consider a uniform beam of  length ,l rigidly clamped at both ends and which executes

transverse vibrations when subjected to an external load of  density ( , ).q q x t  We suppose that the

vertical position of  the beam at any time  t  is given by the function

It is well known that at time  t  the kinetic energy and the total potential energy due to the elastic

deformation of  the beam and the potential energy of  the external load are respectively given by

                                                           (15)

and

                                                                                                                                                (16)

where   is the mass per unit length,  A  the cross-sectional area, and EI  the flexural rigidity of  the

beam.

Hamilton’s principle requires that between times 
0
t  and 

1
t , at which the positions are known, the

motion will make stationary the action integral

on the space of  admissible functions. Hence, from (15) and (16) we have

                                                                                                             (17)

In order to make the mathematical developments required by the use of  the applications of  the

techniques of  the calculus of  variations, we assume that                            where 0 1
0, , .G l t t          

Since the beam is rigidly clamped, the boundary conditions are given by

     
2

2

20

1
, 2 , , ,

2

l

p

w
E EI x t q x t w x t dx

x





                


 
2

0

1
, ,

2

l

c

w
E A x t dx

t

        



 
1

0

22
2

20

1
2 .

2

t l

t

w w
I u A EI qw dxdt

t x


                   
 

 , , [0, ].w w x t x l  

   1

0

,
t

c pt
I u E E dt 

   0, 0, , 0, 0,w t w l t t      (18a,b)

w w x t x l, , [0, ].w w x t x l    4 ,C G
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                                                                                                                            (19a,b)

In view of  these observations and since Hamilton’s principle requires that at times 
0
t  and 

1
t  the

positions are known, the domain of  the functional (17) is given by

                                                                                                                                    (20)

where 
0
h  and 

1
h  denote the functions which give the positions of  the beam at t 

0
t  and 

1
t and a non-

standard notation has been implemented in order to handle the spaces of admissible functions and

directions effectively. Thus, the superscripts in (20) are consistent with the ends conditions. From

definition 3, it follows that the corresponding space of  admissible directions is given by

                                                                                                                                                   (21)

To see this, we only have to note that for arbitrary ,C Cw D  and arbitrary direction ,C C

a
v D  it

is true that ,C Cw v D  , too. The condition  ii  of  definition 3 is satisfied if    4,w v C G  and

 .q C G  Now, in the case of  the functional given by (17), the condition of  stationary functional is

given by

                                                                                                                                         (22)

If  2, ( )w v C G  the application of definition 2 leads to

(23)

where 
, .C Cw w

Let us consider the first term in (23).  Since  2, ( )w v C G  we can integrate by parts with respect

tot and if  we apply the conditions                                                               imposed in (21) we obtain
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In an analog situation since  4,w v C G  we can integrate by parts twice with respect ,x to  thus

obtaining

 (25)

By replacing (24) and (25) into (23), we have

(26)

According to (21) and (26), the condition (22) reduces to

(27)

where  , .C Cw w

Now the application the fundamental lemma of  calculus of  variations in ,n   it follows that the

function  ,C Cw  must satisfy the differential equation

(28)
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It has been demonstrated that the boundary value problem which corresponds to a vibrating

beam rigidly clamped is given by the differential equation (28) and the boundary conditions (18)-(19).

Now, let us assume that the beam is simply supported at both ends.  In the manner of  achieving

the spaces (20) and (21) we have that, in this case, the spaces of  admissible functions and directions

are respectively given by

                 (29)

(30)

Now, the condition of  stationary functional is given by

and by virtue of   the inclusion                     we have

from which it follows that the function 
,S Sw  must satisfy the differential equation (28).

By replacing w  by           in Eq. (26) and using directions from the space (30), the condition

(22) reduces to

                                                                                                    con

In the manner of  achieving (28) we have that the function   ,S Sw    must satisfy the differential

equation (28), the geometric boundary conditions (18 a, b) and the natural boundary conditions

 (32 a, b)

If  the beam is free at both ends, we must consider the condition
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where

(33)

In the manner of  achieving the previous boundary value problems, we have that the function
,F Fw must satisfy the differential equation (28) and the natural boundary conditions

 (34)

(35)

The remaining boundary conditions are obtained as a combination of  the analyzed cases.
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                      

5. Concluding Remarks

It has been demonstrated that the use of the

mechanical «    -method» is not necessary since it

is a source of  confusion and its lack of  rigour

leads to obscure definitions. Moreover, it is more

natural and clearer to present the variation of  a

functional as a straightforward generalization of

the definition of  the directional derivative of  a

real valued function defined on a subset of  .n

The determination of  the space of  admissible

functions and the space of admissible directions

generates a clear statement of  the problem. This

is particularly true in the study of  the dynamical

behaviour of  structural systems. This has been

shown in Section 4.

Surely, opinions will express that the heuristic

procedure described in Section 4.1 finally leads

to the same correct results of  Section 4.2.

However, the use of  functional analysis leads to

a deeper and clearer understanding of  the

problem. Today, solving practical problems

necessitates the introduction of sophisticated

mathematical tools such as the concept of  weak

solution and Sobolev Spaces. Emphasis should

be placed on the use of abstract results because

despite of  the abstractness of  these topics, they

lead to very practical outcomes. For instance, the

finite element method is a powerful computational

technique for the solution of  boundary value

problems that arise in various fields of  engineering

and applied science. It is necessary to use the

Sobolev spaces to know the qualities of  the

numerical approximation of  the mentioned

method, [24], [31]-[33].

There exists a growing gap between pure

mathematicians and applied scientists to the point

that experts in the two mentioned areas are unable

to understand and to communicate. It is impos-

sible to reduce, or at least to stop this gap, if

heuristics and obscure mathematical procedures

are used. For instance, from some textbooks the

following statements have been compiled:

       , 4

0 1
; , , , 0, 0, .F F

a
D v v C G v x t v x t x l         


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Definition
     «Mathematically, a functional is a real

number obtained by operating on functions from

a given set».

Lemma.

                  If                     and

for any arbitrary continuous function ,v  for all

 ,x a b , then 0F   on  , .a b »

It is true that this lemma can be proved

without the usual restrictions , ,v C a b    
    0,v a v b   but then it cannot be used

in a problem which involves fixed end points

because in this case the admissible directions v
are functions which vanish at the endpoints a
and b  as in the case treated in Section 4.1. It

must be noted that in the definition of  variation

(3.1)   is a small arbitrary real number. Moreover,,

u  satisfies the conditions:     0,u a u b  

so it is not an arbitrary continuous function v  for all

 ,x a b , as is required in the above lemma .

This type of  imprecision could be originated

in the use of  obscure and vague concepts which

can be avoided using only certain abstractions

of what are considered to be simple ideas from

elementary calculus.

Finally, it is emphasized that the rigorous

procedure described is particularly adequate to

derive the boundary value problems of  beams

with internal hinges and plates with a line hinge.

In these cases, the first derivatives of  the

deflection functions are not continuous (in the

points where the hinges are located) and the

analytical developments require a careful analysis

of  the regularity properties of  the admissible

functions.
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