Cuadernos de Ingenieria. Nueva Serie. Revista de la Facultad de Ingenieria

de la Universidad Catélica de Salta (Argentina), nam. 13, 2021

Analysis of Gutenberg-Richter b-value and m__ . Part III: Non-positive Gutenberg-Richter

b-value

Analisis del parametro b y m___del Modelo de Gutenberg-Richter. Parte III: valor no
positivo del parametro b de Gutenberg-Richter

Mika Haarala Orosco’

Probabilidad — Ingenieria Sismica /

articulo cientifico

Citar: Haarala, M. (2021). Analysis of
Gutenberg-Richter b-value and m__ .
Part III: Non-positive Gutenberg-
Richter b-value. Cuadernos de Inge-
nieria (13). Recuperado de: http://

revistas.ucasal.edu.ar

Recibido: setiembre/2021
Aceptado: noviembre/2021

Abstract

When we analyzed the Gutenberg-Richter distribution function in
our earlier works, we assumed that the b-value is positive. Using
generalized estimators, we found that in some cases the b -value can
be also negative. This paper gives a theoretical background for the
negative b -value. We also expand the KS functions on the interval
—o < B(my, —m,, ) <—log(2).
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Resumen

Cuando en trabajos anteriores analizamos la funcién de distribucion
de Gutenberg-Richter, asumimos un valor positive para el parametro
b. Con el uso de distintos estimadores, encontramos que este para-
metro puede tomar también valores negativos. En este articulo se es-
tablece un marco tedrico para el caso de valor negativo de b y demos-
traremos la expansién de la funcién Kijko-Sellevoll (KS) al intervalo

—oo < ﬂ(mmax_ mmin) S_10g(2) :

Palabras clave: Funcién de distribuciéon de Gutenberg-Richter, para-
metro b de Gutenberg-Richter, funciones de Kijko-Sellevoll
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1. Introduction

In earlier works (Haarala and Orosco, 2016a, 2016b, 2018) we have studied the double trunca-
ted exponential probability density function (PDF), or called also as the Gutenberg-Richter pro-
bability density function (GR),

B Bexp[—ﬁ(m —m,, )}
f(m)— lfexp{fﬁ(mmX —my, )] (1)

(where S =blog(10)) assuming that the g is always positive. Even if we generate the data with
positive f-value, the generalized estimators can give negative f-values. We gave an example in
a previous work (Haarala and Orosco, 2016b) where we could not get the values with the genera-
lized Page estimator with our program. We set the estimates A% to zero (as we can see the Page
estimates at the points for n>188 in the Figure 1) without knowing that they are negative values.

n)
12 'GAU

0 . L . n L . L . n
0 20 40 60 80 100 120 140 160 180 200

Number of sub-catalogue

Figure 1. Example of Generalized Aki-Utsu (GAU) and Page (GP) estimators (Haarala and Orosco, 2016b)

Areason for this «failure» was our assumption that the 4 -value is always positive. Another reason
was the discontinuity of the PDF (1) at =0 .Whenwe proved more general and simple results for the
Kijko-Sellevoll (KS) functions, we found their real convergence interval —log(2) < B(m,,, —m,, ) <o
even though we gave the proof only to the positive interval 0< f(m,, —m_ )<e (Haarala and
Orosco, 2018). In this article we focused to the negative part of the Kijko-Sellevoll (KS) functions,
which will yield the solutions for the interval —eo < B(m,,, —m,;, )<O0.

‘min
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2. Generalization of Gutenberg-Richter distribution function
Let’s consider the distribution function (1) which has the cumulative distribution function (CDF)

0, form<m
1-exp[-B(m-m,,)]
l—exp [—,B(mmax ™ ):I

1, form_ <m,

‘max

‘min ?

s form_ <m<m

FI\/I (m) = ‘min — max > (2,)

where —eo< f<eo and —eo<m,, <m, <. The difference m, —m, 1s positive always, so the fac-
tor B(m,,—m,;, ) canbe negative onlyif #<0 (i.e. 5<0). We can see that CDF (2) has a discon-
tinuity at =0, where both the numerator and the denominator are zero.

If B is negative, it still holds that f(m)>0 for all me [m,,,,m,, ]| inthe PDF (1) because of
B exp|—B(m—m,,)]|<0 and 1—exp|—B(m,,—m,, )| <0.The CDF (2) holds also, since F,, (m)=0
for all me [m,,,,m,,. | because of both the nominator and the denominator are negative at the same
time. It is not difficult to see from (2) that

FM (—oo) = FM (mmin ) = O’
1

and F), is a non-decreasing right continuous function.
If g=0, the limit of the PDF of GR distribution function can be gotten as

5exp[—ﬁ(m -m. )}
< [~B(m, —m_ X
1_;[(”
exp[*ﬁ(m —m_ )]
(mmax — M ) 1+ z%: [7/8(”1"“”( My )}

= k!

S (m)=

when f—0. This is a Uniform Distribution function. It’s CDF is well known, but we can get it
also by
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& [-Bm-m,,)]
1—exp[—ﬂ(m — My, )} _ 1_;T

1= [ B a) | & [B (= a)]

eenpogera|

= k!

(mmax— m. ){] + i I:_ﬂ(mmax_ M in )] }

= k!

Now we can complete the definition of the General Gutenberg-Richter (GGR) distribution
function. The PDF is defined as

Bexp[—B(m—m,, )|

, form, <m<m_ NB=0,
1- exp[i/ﬁ(mmax — M )}
f(m)= ;, form_, <m<m, AB=0,
‘max mmin
0, for m & [m, ,m,.. |
with CDF
0, form<m

min ?

1—exp[-f(m=m,,)] ’
()= XPLA (o= )|

m- mmin

form,, <m<m_ AB+0,

®)

form,,, <m<m, ~B=0,
mmax Mg

1 formz2m,,,
where —eo< f<eo and —eo<m, <m, <o .We will show later that f is always bounded for prac-
tical applications. That is to say, we could assume directly —eo < <o

Figures 2a and 2b illustrate this process with parameters =0, m_, =5, n=1 using different
values for parameter m,_,_ . In the figures 2Z¢ and 2d, the parameters are b=-0.1, m, =5, n=1 with
different values of parameter m,_ . We can see from these figures how the probability decreases in
small values and concentrate to m,_, when m_— . Even in the case of the Uniform distribution
function, the events in the interval 5<m <10 become so rare that it is more probable to get a lot
of huge values than small values when m,_, — o . This fact made us suspect that m_,

is bounded,
when b is negative.

X
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The negative f# has an opposite behavior than the positive one. While the positive S concen-
trates the events close to the minimum limit, the negative S concentrates the events close to the
maximum limit. The figure 3, which was generated using m_, =8, m,, =5, and the b-values 1 and
-1 (both figures have 100 events), illustrate this situation.

‘min

T T T T T T T T T
0.2fF — 1
011 1
0 10 20 30 40 50 60 70 80 90 100
(a) PDF in case of b=0 s
1 T T T T T T T
0.5 b
0 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100
(b) CDF in case of b=0 M
0.5 T T T T T T T T T
0 1 i 1 1 1 1 /
0 10 20 30 40 50 60 70 80 90 100
(c) PDF in case of b=-0.1 M
1 T T T T T T T
051 1
0 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100
(d) CDF in case of b=-0.1 M

Figure 2. Some PDFs and CDFs for non-positive b-values
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0 50 100 0 50 100
b=1 b=-1

Figure 3. Distribution of events with different b-values

3. Kijko-Sellevoll functions

Let M,,M,, ...,M, e [m,,,m_ ] be asetof random variables from the catalogue. We assume that
these random variables are independently and identically distributed (iid) with CDF of F,, given
by (3). Moreover, let m,, m,,...,m, to be a sample of magnitudes having a CDF

0, form<m_,,
FM” (m)= [FM (m)]n form , <m<m,_, 4)
1 form,, <m,

forall n>0.
It is not necessary to assume that the magnitudes are ordered. Actually, we are using here the
maximum function, max(M,M,,...,M,). The formula (4) can be expressed as

P(max,(M,)<Sm)=P(M,<mAM,<mA..AM

=[]P(M,<m)

<m)

n
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Similar way for the minimum function, min(M,,M,,....M, ), (4) results as
P(mini(Mi)Sm):1—P(mini(M,.)>m)
=1-P(M,>mAM,>m~A..AM, >m)

“1-[[P(M, > m)

i=1

=1-[P(M,>m)]

=1-[1-P(M,<m)]

=1-[1-F, (m)]

=F,, (m)
with a CDF
0, form<m,,,
E, (m)= 1—[1—FM(m)]" form,,, <m<m,,, )
L form , <m,
forall n>0.

We have showed in our earlier work (Haarala and Orosco, 2016a, 2018), that the expected value
of the maximum M, in case of positive f is

Bt = E (8, )) = 1,57 (B0 =),

7 K (6)
ﬂ(E(M(,,)) m ) f;;gz(ﬂ( max_mmin))’
where /' is a Kijko-Sellevoll function 1 (KS-1)
KS 1 N (1 eXp —x]) 7
; P ™
and £, is a Kijko-Sellevoll function 2 (KS-2)
k
K? 2 i(l—eXp[—x]) 8)
= k(k+n)

These relationships are valid for all 7€ R, and for all 0< B(m
Orosco, 2018). The relation between KS-1 and KS-2 functions is

—m,;, )<e (Haarala and

‘max

Cuadernos de Ingenieria, nim. 13, 2021: 45:84 51
e-ISSN: 2545-7012



Mika Haarala Orosco

ﬂ(mmax — My ) = anS_l (,B(mmax ~Myin )) + quS_z (ﬂ(mmax — M )) . (9)

Note that we have integer valued #» in the CDFs (4) and (5), when we have a set of events. The
real valued 7 is a useful feature in the applications, where the estimate of the number of events
is a real value. For example, if we estimate 7.5 events by year, rounding this value into 7 or 8 we
are producing a numerical bias for the results. It is to remember that the value 7.5 does not mean
that there are really 7.5 events by year. The 7.5 is an average number of events by year, when we
are considering a long interval of time. Our formulae make it possible to directly calculate those
results without rounding.

We will give our proofs using variable 7 instead of n giving general results for the formulae. In
the Appendix A it can be seen that 7 can be also negative even though the proofs are given only
for positive real values, ne R, .

4. The series for the expected values
Kijko-Sellevoll functions

First of all, we will show that the KS functions (7) and (8) are valid also on the interval
—log(2) < B(9m —my, ) <0 . Actually, our earlier proof (Haarala and Orosco, 2018) holds on this in-

terval, if 7€ R. Because (1-exp[-B(m-m,,)])" is not defined generally when feR_ (it is defined
only for 7€ N), we must consider (exp[—ﬁ(m—mmin )]—1)" for all ne R. We have

= (1 —exp[—ﬂ(im —m_ )])k :l

— k+n

=

D

T om ﬁkzl k+n

9 {1 i(—l)k(exp[—ﬂ(m—mmm)]‘l)m}

k+n-1

= —exp[—ﬂ(m —m, )JZ(—I)k (exp[—ﬂ(aﬁ —m, )] —1)
= (exp[—ﬂ(m —m, )] —1)” exp[—ﬂ(im - mmin)]g(l —exp[—/i’(wt -m,, )])k
= (exp[-A(m—m,,)]-1)".

min

The ¥~

" (1=exp[-B(m-m,,)]) is a geometric series which gives 1/exp[~A(m-m,,)] when

—log(2) < B (M =y ) <0 . (Actually, the convergence interval is —log(2) <8 (M — My, )< oo, but we
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consider only the negative part since the proof of (10) is different when the positive part is considered.)
This geometric series diverges at S (o — m,y, ) = —log(2) . Thus, 2::0(_1)" =1-1+1-1+—--.. Owing to
this it holds that Z::O(l—exp[—ﬁ(mt M )])k: exp[ﬁ(sm—mmin )] intheinterval —log(2) < B(9M — M ) <0
and we have the limit exp[B(m-my,)]—1/2, when B(m—m;,)——log(2), we could defi-
ne Z:’:O(_l)" =1/2. This limit could be seen like an expected value. Because of ZZO(—I)]‘ =1 and
zgl(—l)k =0 forall n=0,1,2,...; it is like the case of a coin, which has expected value 1/2 when n — co.

"This definition is related with the fact that the alternating series

i(l—exp[—ﬂ(km—mmm)]) _ i(_l) =—log(2)= 10g(;j

k=1 k

converges when S(m—m,;, )=—log(2).
The conclusion is that equality (10) holds for all —log(2) < (9 —m., ) <0 and it gives an inte-
gration formula

J(exp[—ﬂ(sm—mmm )J—l)” dm
. )])A (11)

Applying this integration formula for the expected value, we have

i Vom [ olAlm)] 1 Y
E(M(”)) = Mhmax m;".m [CXP[_,B(mmax M ):I -1 -

e[l -m,)])
""mx_ﬁg P (KS-1)

1l n ¥
S .
g an(t-ep[-p(m, ~m,,)])

because zzzlzk/kz—log(l—z), —1<z<1, and

k

< OB )]
2 C

when —1og(2) < fB(Mpe—Mmin ) <0 . The KS functions are alternating series in this interval.

= Mgy = Miin
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The result (12) is the same than (6) with (8) in the non-negative interval. It means that we can

use the relations

(1 - exp[—ﬁ(mmax My )])k

Bl ~E(11)]=3 o = 1 (B =)
_ e n(1-exp[-Blmu -m)]) o,
ﬂ[E(M)—mmm]Zg, ( [k(k+n) ]) = £ (B (M — )

for all —log(2) < B(Mpe —Mpin ) <o and neR,.
Extension for the first Kijko-Sellevoll function

It is much more complicated to solve the case when [ (#p—mmy, ) <—log(2) . In this case, it is
. -1 .
exp[-f(M-m,, )]-1>1 (or in others words —1<(1-exp[-A(M-m,,)]) <0 ). In like manner as befo-

re, we get the geometric series as

S} eslpmoma
=0 l—expl:—ﬂ(im—mmm )] expl:_ﬂ(m_mmin )] ’

which is true for all sme |m_ ~log(2)/8,=[ . Thus,

I(exp[—ﬁ(nﬁ —mmm)]—l)” dm

_ v _exp[-B(m-m,,)] &
—J‘(GXPI:—ﬂ(Sm—mmm):l—l) exp[—ﬁ(m—mm)]—l;(l_eXp[_ﬁ(m_mm‘“)]) dm

—k+n-1

:_% (_ﬁ)exp[_ﬁ(gﬁ_m'"‘“)]g(_l)fk(e"p[‘/”(ﬂﬁ—mmm)]—l) do (13)
= —% i {(_1)" J(_ﬁ)exp[_ﬁ(m — M ):I(expli—ﬂ(gm -m,. ):I _])fkw/f] dzm}

_ Iy (—1)’f(exp[—ﬂ(§m—mmin)]_1>—k+rz .

B ﬁk:o _k+77 .

There are two observations when 7€ N. Firstly, we have in the case k=7-1

[Brexp[-B(m=m,,)]dom =exp[~B(m—m,,)]+C
= exp[—ﬂ(m—mmin )]—1,

where we have set C =-1. Secondly, the integration in the case k=7 gives
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(—1)k+1 (_ﬂ)exp[—ﬂ(m—mmm)] sm—(_l)M et - N
p je"p[—ﬂ(fm—mm 11 g log(exp[~(m =y, )]=1)+C. (14)

Hence,
I(exp[—ﬂ(aﬁ—mmm )] —1)” dm=

Lo [V (exp[-Blme =m)]-1) | >
ﬁ;}< pa— (-1) log(exp[—ﬁ(mmax—m,m")]—l) (k=”)+C,

(15)

where <x|y>(c) is a switch function giving x, if ¢ is false, and y, if ¢ is true.
When we worked with KS functions in negative side, we had 0<m,,—m_ <-log(2)/8 (or in

other words m,, <m,, <m, —log(2)/B). This means that the m

. Must be close enough to m,;,
when we integrate over the interval [m,, ,m

| - If the difference between m,,—m_, is bigger,
we have m <m, —log(2)/B<m,, <& —s<f(m,~m, )<-log(2). Integrating over the interval

[ log(2)/Bom,,. |, we get

Mo _ _ _ \/
eXp I: ﬂ ( m Min ):' 1 dm
Mmyin—log(2)/B exp I:_ﬂ(mmax My )] -1

r —k+n (16)
1 7 — (_1) [(eXp[_ﬂ(mmﬂX_mmin)]_l) _1]
:E(exp[—ﬁ(mmax —my)]-1) %} k-7 '
Due to (yh —1)/h —log(y), when & — 0, we can get the limit
o (exol—B(m —m V-1 —k+71_1 )
( 2 ( p[ A mﬂ*_k+;"7'")] ) p 2 log(exp[—ﬁ(mmax—mmm)]_l)' a7

This is the same as (14). Hence, we say that the series in (16) holds for all 7€ R, , where we
replace the discontinuity term by (14) in the case k=7 of our calculus.

Using integration formula (11), the integration over |m,,.m,,~log(2)/8] gives

et exp[_ﬂ(m My ):I -1 ’ 1 1 (_1)k
dm=—(exp[-B(m__ -m_)]-1 .
Minin eXp I:_'B(mmax M, ):I -1 " ﬁ (e pl: ﬁ( s mn ):| ) Z;

k+n
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The final result of the integral can be written as

o e exp[ ﬁgm m, :|—1 1
E(M(v))_m'““x J[exp[ —B(m,, — mm)]_l] o

=m,,, —E(exp[—ﬂ(mmax—mmm )]—1)”{ p
i <<1>*[(exp[ﬁ<m.mmm)]l)‘“”l} o

k-1

ol gk
-l
L

k=0

So, we call the function

f;f“*I(ﬁ(mm—mmm)):(cxp[—ﬁ(mm—mmm)]—l)’”{2(“)
. (71)k (exp[fﬂ(mnm—mmm)]—l)ikw—l
o |

k=n

k=0

(18)
(- )r7+1 log(exp[ B(m mmm)]l)>( ) )].

as an Extension for the Kijko-Sellevoll function 1 (EKS-1). This function is valid, when
=00 < B (M =y, ) < —log(2).

This function (18) does not look like a KS-1 function, but it is a reflection of it (Appendix A).
Also, we could show that EKS-1 function yields

R
LIS (B =y )) = - (19)
(1-exp[=B(Mye, =) ])

when ne N. This expression was found anterior work (Haarala and Orosco, 2016a) by showing

n (1—ex —ﬂ(mmax _mmin) '
75 B =)= S LD s e
n Minax ™ My = (1 - eXp[—ﬁ(’”max ~ My )])"

The proof of relation (19) is given in Appendix A.

Even though we have the discontinuity term in the series, there is no discontinuity as we
showed above. In the numerical calculus, it is to replace the discontinuous term with the logarith-
mic term (14). Because we use the acceleration method to calculate the series, we do not need to
mind this correction if 77 is bigger than the number of terms in the accelerated sum (for example,
7>20 in double precision systems).
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There is an alternative way to solve the problem of the expected value in the case of the negative
b -value; we will show that in the Appendix B.
Extension for the second Kijko-Sellevoll function
The Extension for the Kijko-Sellevoll function 2 (EKS-2) could be found by
S (B (M = 103, )) = B (=i, ) = S (B (1 = 1))

'To find the EKS-2, the -g(m,, —m,,) and log(2) have the series

1

-B(m,,, _mmin) = log(exp[—ﬁ(mmx —my, ):| —1) +log| 1— - exp[—ﬁ(’”max —-m )]

(20)
tog{erp B (men )] _1)_2(—1)‘* (exp[—ﬂ('zmax ~ ) ]-1)
and
log(2) = log(1~(~1)) =3 (_,:)k : @

respectively. Using (21), we get from (20)

Minax — Mipin = _llOg(eXP[_ﬂ(mmax My )J - 1)

B
< (—1) had _lk €X] _ﬂ Mypax = M -1 Y - kl
5 +{2< )" {exe[-A( )

k=1

1
+ n
B (exp[—ﬁ (M = P )} - 1)

B
e (0 | (P[Blm ~m)]-1)
GEE (oot |
g (A0~ -1)
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Finally, the expected value yields to

k—n

_ 1 i
E\M | =m0+ (M — My ) — g
( (’”) + ) B (exp[—ﬁ(mmax_mmin)}_l)
1—(exp| =B (Mypa— 1y ) [ =1 B
=mmm+% —log(eXP[—,B(mmax—mmin)]_l)+ ( p[ : n )] )
* (exp[—ﬁ'(mmax _mmi"):l _1)_7] /:1 kn((k_:)ﬂ)
(o501 ))1) {0 Bl m)]-1)
s e

where we need to replace the discontinuity term of the series by

ey [(ex0[ B =) 1) =(exP[B (1 =) —1)'””

= k(k=1)

, {n(—l)k (X[ =) ]-1) _1}}

(X[ m)]1) i Kw)

k—n

= (1) (exp[ B (M=) ]=1) " 108 (exP[ =By = i, )] -1).

when ne N. The Extension for the Kijko-Sellevoll function 2 (EKS-2) is now

=1

1= (exp[ =B (1= my, ) ]-1)

1 (B (M =mey,)) = ~log (X[ B (M =y, )] =1) +

n
- | _1 k
ot V{522
. n(-1)" (exp[ =B (11, ’mmin)]fl)_kwf] )
_;< [ s }(_1)” 1og(exp|:—ﬁ(mmax_mmi“)]_l)>
(k=)

for neR._.
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Uniform distribution

The Uniform Distribution function results are well known, we will show here how we can also
get them from the GGR CDFE. Let start with the KS-2 function

(1 - exp[—ﬂ(mmax — My )])k

E(#,)-m,, =%; e . 22)
Since
1= exp[~ (= )]= Bl —mmm){l rg s ] } @)

the equation (22) gives

n+1

oo —_ p— ./71
E(M(ﬂ) ) -m = L(mmax -m, ){l + Z[ ﬂ(mmax - m . ):' }
=2 J:

+
ﬂkg‘ ke(k+m)

If -0, then we have the KS-2 estimator for the Expected value as

S n B
E(M(”)) = Mein + n +1 (mmax mmin) (24)
which is known as an unbiased estimator for the maximum of the Uniform Distribution function
in the form
n+1 —
Mypax =—— E(M — M i + m i, -
n ( ( (77)) )

The KS-1 estimator at f=0 can be directly got by

v n
E(M(U) ) = My + (mmax ~ Mg ) - |:(mmax ~ Miyin ) - ﬁ(mmax ~ Miyin )i|

1

max 7(mmax — My ) *

n+l
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Now we have shown all possible cases to calculate the expected value. We give new definitions to
the KS functions:

S5 (x), when —eo<x<—log(2),

n

S5 (x),  when —log(2)<x<es,

U

[5#52(x), when —eo<x<—log(2),

£ (x), when —log(2)<x<eoo

n

R
-]

and 7€ R, . The name KS__ associates better the KS function or its extension to the maximum,

because KS-1 and EKS-1 are measures of the distance from the maximum to the expected value.
Similarly, because KS-2 and EKS-2 are measures of the distance from the minimum to the expec-
ted value, the name KS__ associates the KS function or its extension to the minimum. We can see

s, 'max

the examples of the £~ and £ in Figure 4.

S
s

0
bm,~m,)

Figure 4. Example of the KS functions
5. Series for the variance
The third Kijko-Sellevoll function

As we saw in the case of the expected values above, it is only a technical detail to prove that the KS
functions work also in the negative side. If we assume that 7€ N, we need no changes to the earlier
proofs. We can see that in this case the KS-3 is valid in the interval —log(2)< g(m,, —m,, )<<, but
we need to assume 7€ R, in more general case.
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Let’s start with

P) 1] & (—1)k+j(exp[—ﬂ(mt—mmmﬂ_l)kﬁ
oo (PPLA () |1 23 (m+k)(m+k+ )

I 1 (—l)k”'l(exp[—ﬁ(m—mmin)}—1)"+k+j
“om| B 7+ k) + 5+ )
(-1) (exp[-B(m—m,,)]- I)WH’H (25)

k=1 j=1 (77+k)

where the geometric series gives (when ae [m,,,m,;, —log(2)/8] )

N i 1
;(1—exp[—[)’(m—mmm)]) - eXpl:—ﬂ(W?—mmi“):l.

Thus,
2 (1—exp| =B (m — my, k
I(exp[—ﬁ(m?—m,ni“)]—l) kz{( P[ nik )]) don
O B (s b e | I
= (oA 11 ﬁszgf (n+k)(n+k+ ) <

when neR, and -log(2) < B (M —mmn ) <0 . Following our earlier work (Haarala and Orosco,
2016), the second moment can be integrated by parts as
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xxxxx

Mmax Mg M

'min

(26)

min

_ o\ w8 [ 1—exp| — -m,, '
= E(Mm)” 2] ] [ -5l )]]] dydm

1- exp [_ﬁ(mmax T Mg )

| l—exp[—ﬁ(m_mman)] i o 2
[m{" (l—exp[—ﬂ(mmax _mmin)]] ¢ ] .

xxxxxxxx

2
{mm A dm} w2 [ F, () dvdn-| |

mmmmmm

27)

k+j

(1 —eXp [_ﬁ(mmax M ):|)
(n+k)(n+))

”””””””
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We must point out that we integrate [(exp(~) —1)/(exp(-)— 1)]” instead of [(1 —exp())/(1- exp(~))]"
because the exponent function [-]” does not exist in the real axes for all 7€ R, .

The obtained result (27) is the same as that obtained for positive 5 (Haaralaand Orosco,2016b),
so the KS-3 holds in the interval —log(2) < B(Mpa — Mmin ) <o just like other KS functions. Because
of the series in (27) have an absolute convergence in the open interval —log(2) < (e — Mgin ) <o
so we can rearrange those series. Thus, we can calculate the variance as

S [ t=exp[B(m—m)]) 1,
Var( ) Z{Z }277+k( p[ n+k ]) :;fﬂ (ﬁ(mmax _mmm))' (28)

k=2 |j /R

We need to check yet the point at -log(2) . Because we know that (Haarala and Orosco, 2016b)

Var(ﬂ(n)) i{i I 2n 1 exp[_ﬁ(mmax_mmi")l)k ﬁ(mmw_m;m)ﬁw H’(12)S e
n+

= Jj2n+k n+k B 6

forall ne N, where H? 2 k7 is a Harmonic Number of order 2. This shows that the (28) has
an absolute convergence at —log( ), so it converges at the same point. So, the variance (and the
KS-3) holds for all —log(2) < B(nty — Myin ) <o .

It is worth noting that a General Harmonic Number of order 2 can be defined as

H(z):i i 1 2 N i n+j—k
TS k) k) (+k)(m+j)(+j +K)

J=1

It holds H,(f) =H£2) forall n=n=0,1,2.....

Extension for the third Kijko-Sellevoll function

To find extension for the KS-3 in the case B(m-m,, )<-log(2), we get

min

M - (—l)k(exp[—ﬂ(m—mmin)]—l)nikd
5 J. ;5 n-k ;
Var(M(”) ) = — = R ot/ T
B [ea[-Blmn-ma)]-1]
s O (ol B -ma 1)
2 . = n+k [ ’
+— 7 |:f;7 (ﬂ( max mm))
exp[_ﬁ(mmax — M ):I - 1] ﬁ
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We applied the same procedure which resulted in (27) except that here the integral has divided
into two parts. The second integral can be got directly (alike the function KS-3)

M =log(2)/B 1 exp ﬂ im mmm) ek w [
J Z - Ntk J don 3 (1) {21}1

2w, 2 & | &Envifnvk
ﬂ [eXp[—ﬂ(mmax —-m_. )]_1:|” ﬂz |:¢xp|:—ﬁ(n’lmx -m, )]_1:|’I

With the first integral, we start with the geometric series

- o[l ,j:exp[—ﬂ(sm—mmi“ﬂ—l
R

Integrating all terms which has & #n, we find

L I

-k
) ) (exp[-B(m-m,, )] - )" exp[-Blm-m,,)] -
__,[;, n—k exp[ Bl mmm] 1;1 exp )]) dm
_ e (<) exo[-B(n-m,)]-1)
= (—ﬂ)exp[—ﬂ(m—mm;n)];; — dm
1 ) (e[l -m)]-)
where the term j=7—-k must be calculated as
1 (1) (Blexp[-Bln-my)] 1 () log(exp[-lm-m)]-1)
B (U-k)(exp[—ﬁ(mz—mmm)]—l) B n-k
Thus, . .
(1) (exp[-B(mm—m,,)]-1) e
J. k-y] m=
)H/(exp[ B(m,,—m,, ):| 1)Hij (—1)']log(exp[—ﬂ(mmax—mmm)]—l)
ﬂ2‘2< (n=k)(1—k—1) nk | )*C'
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Similar way as before, the variance yields

- <<—1>“'(exp[—/ﬂmm—m.mn)]—1)”* /

(n—-k)(m-k-j) ‘ n-k

1 4 " 2
) : - [ (Blmmme)
) s [exp[~B (=) ] 1] L !

We call the function £, as an Extension for the Kijko-Sellevoll function 3 (EKS-3).

As it can be seen, we did not solve the problem at the discontinuity point k=7 (or j#n-k in
the case of EKS-3) as we made before. Even the formula of EKS-3 is valid in any neighborhood of
k , it will be unstable to calculate numerically when =k .

Variance for the Uniform distribution

We have proved above, that KS-3 is valid when -log(2) < g(m,,—m,, )<<, so they are valid in
the neighborhood of zero. We can apply the (23) in to the(28), so

(ﬁ(mmax —my ){1 + i['g(mml'mm)]}]

ii /AR
B Em+k|Sn+ n+k
S [B(M = )]
(= m ) 14 3 LB
_n 1 /Z J!
_77+177+1 n+2

S IS 1 ~
+22n+k{szJ n+k

This gives (m,,— mmi")z/IZ in the case n=1.

6. Some analysis of the GR distributed data

Let assume that m_;, =m,_, . Then the expected value gives

‘max

E(M(q)) =My — m"jf‘ [FM (‘m)]n dm=m_ =m_ .

n
Munin

"This trivial result shows that the expected value is constant for all 7e R, .
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Symmetrically distributed data (Uniform distribution case)

Let 7,,7,€ R, to be fixed. We have now

§ |

mmin:(nl I)E( ) Th My

thus,
o mHE(i(n)) UZHE(M(M)’
=1, l n=m, ’ (30)
ml o= M+l
m, =1 E\M, . |+7 E(M
2771_772 ( (h)) 1771_772 ( (’Iz))
Because m,, <m,_,_, it indicates

(i, Jon B, )< 2 el ) B ()

Thus, n, <7, because of the expected value function is increasing. 7
The formulae (30) shows that if we can find estimators for the expected values E(M ( m)) and
E (M ()] » We can calculate the estimates for the m,, and m,, quite simple way. We will give an

example in the section 8 how to use the formulae (30).
It is not to be forgotten that all expected values lie between then minimum and maximum as

= n
m. . SE(M(”)) m +m(mmax _mmin)smmax (31)

for all neR,. The limits are E( 0))—hmE( )=mmin and E(M(m))—hmE( () m,, . If

n-0+ N

E(]Vlw)) =oo OF E(M(,])) =—oforall ne R, or E(}VI(M) =—o and E(IV[(,”) =o of some 7, <7, then
the limits are unbounded.
If both expected values £(M, ) and E ( »y) are bounded, the right-hand side in both equa-

tions are bounded and the data has bounded limits. We can see also from (30) that if one expected
value is bounded and another is unbounded, the limits are unbounded. But if it happens, there
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exists only one bounded expected value because other way we can find two bounded expected
values showing bounded limits.

We have seen that two bounded expected values at distinct points guaranties bounded limits
for the data in case of f=0.

We will see next that the maximum estimates of m,_, and m,

max

. are bounded in case of the
uniform distribution. Suppose that we have n events m,m,,...,m,. Without losing generality, m,
is assumed to be a maximum estimator for E (1\7[ ) and n' Y m, to be a mean estimator for
E(]V[(])) . In this case, we have 7,=n and 7, =1. So, we can find from (30)

. n+l 2 13 2 2 1&
max lmn_ 1_ mk_mn+_mn_ - m,
n— n—-1ni3 n n—1ni3
. n+l 2 13 2 &
m,, =- 1mn+n - m, =-—m, + Ika
n-— n-— k=1 n—=1%
. .. n-1
The maximum or minimum could reach when m, =m,=---=m,_, . Thus, I:':Imk =(n-1)m, and

n (32)
Amin = ml - (mn - ml)
We can see from here that
mmin < rhmax < mmax +g(mmax _mmin)’
n (33)
mmm (mmax mmin) - rhmin - mmax'
If all events are equal, m,=m,=---=m,, we can see from (32) that m,_, =m, indicating that the

upper and lower limits are equal. In other words, if m,, =m,, then E (M (ﬂ)) is a constant (this case
the distribution function is a delta function).

Asymmetrically distributed data
The case f#0 is different, because the expected values are bounded also in the unbounded

case of maximum as we will see later.
Let’s assume that £ >0. We can use the KS-2 function

_ _ n . (l_exp[_ﬂ(mmax_ M i )])k
E(Mm)—mmm*;; k(k+1) ’
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where ne R, . When g(m,, —m._,)=c,we can get

mmian(]V[(”))—I;” , (34

where H,= z:zln/[k(k+n)] is a General Harmonic number (Abramowitz and Stegun, 1972; Haa-
rala Orosco, 2016a).

The factor g(m,,—m,,) is unbounded if B, m,,—m_. or both of them are unbounded. If we
assume that £ is bounded. The equation (34) shows that the m,_, is bounded if and only if the
expected value is bounded.

We can write the equation (34) of unbounded case, as

E(My ) =my, + % .
By reason of f*7(B(m,—m,))20, when 0<p(m,—m, )<=, then E(M(rz)) 2m
m, < E(SZVI(")) <m,+H, /B for any fixed ne R, , no matter if the expected values E(ZV[
bounded or unbounded data. If £ is unbounded, then E M, )=m for all neN.
The same can also be shown when <0 . Again, the factor f(m,, —m,_,) is unbounded if 5,
m,, —m_. or both of them are unbounded. In that case we will use the EKS-1 function because
B(m_-m)<-log(2). To find the limit in the unbounded case, we have

e (Y = (2 (eXp[_ﬂ(mmax_mmiﬂ)]_1)71{”7_1
1 Z(k : 2 [ k= }
(expl:_ﬂ(mmax_mmi"):l_l)
1

=Ml = ﬁ{(exp[—ﬁ(mm— ) ]-1)" Y Cy

- Lhus,

() are from

‘min

g
B
|

mk+n
(1) [ (e[ =B~ m)]=1) ~(exp[B (=) ] 1) |
2 k=1
[1 - (exp[—ﬂ(mmax— m. )] - 1)7”] }
+ - .

When g(m,, —m,,)—>—c, then (exp[—ﬂ(mmﬂx— m. )] _ 1)’”% 0, (exp [—ﬂ(mmax— m. )] _ 1)’k_> 0
and we get the expected value

(8, =m +— (35)
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and the maximum
Bn

Similar way than before, m_ is bounded if and only if the expected value is bounded.
Moreover, all the expected values from bounded or unbounded data are bounded because
m+1/(Bn) < E(M(m) <m,, for fixed neR,.If B is unbounded, then E(M, |=m,, forall neR,.

The analysis above sounds quite theoretical. But we showed that if we have two distinct boun-
ded estimators, —eo < gy % By < o011, <1, then the g is bounded and at least one of the limits
m,, or m_  1is bounded. This means that at most the maximum m,_, can be unbounded in the
earthquake catalogue, where 48>0, and the minimum is bounded.

As we saw above, the expected values are bounded even the data is bounded or unbounded.
This makes so difficult to estimate bounded m_, . The recurrence formula gives one idea to show,
if data is unbounded. It can find from the Appendix A.

The equation (34) can be written in the classical form

H
f=—-—"
E(M(rn)‘mmin

Owing to E(IV[(”) —m,;,>0 always, it implies the §>0 for all ne R, . This means, if data comes
from unbounded system, that the b-value is always positive. It cannot get negative values.
Similar way, the equation (35) gives

ﬂ(mmx _E(M(m)) |

B=

Because of m,,, —E(M )>0,then f<0 forall neR,.
We have shown above that the b-value do not change the sign if the data is unbounded. It means
that getting positive and negative b -values within generalized estimators, is possible only in the
case of bounded data and enough big 7 as we could see in figure 1.
Similar way as in the Uniform distribution case, we can create the new estimators. Let’s con-

sider the case f>0.1If n,n7,€R, , then

ﬂ:L B= Hﬂ;
E(M(Tll))_mmi“ E(M(nz))_mmin
gives
" =H,7 E(M(m)) HrzlE(M(r; )), B 71’-1,,2 _Hm
Hr. = Hy E( (72) ( ('7.))
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This also shows that m_,, and f# are bounded and we can calculate them if there exist two different
and bounded expected values.
In the case of f#<0, n,,7,€ R, , we have

| 1
B= —,
nl(mmax—E(M(m))

Thus,

m :an(M(qz))_ﬂlE(M(m)) A= -1

‘max 2

m,—n, _771’72(E(M(nz))_E(M(m))).

In this case, m_
expected values.

and g are bounded and possible to evaluate with two different and bounded

7. Expected value for the minimum

We will change the variable setting ot =-x+(m, +m,,), when x_,=m_ and x_ =m_ . It implies
that we flip the axes in such a way that the minimum will be the new maximum and the maximum
will be the new minimum. Then the integral yields

1- exp[—(—ﬁ) (mmax L™ )
s,
1—exp [ﬁ (mm.dx - M, )]
= _”T“ eXp[_ﬁ(mmax M ):I —I+1- eXpl:_ﬁ(x = Mo )] n dx
€Xp [_B(mmax T M ):| -1

1 - exp[_ﬁ (mmax - mmin)

Minin

mf [ 1-exp[ ~(=p) (w1 =, )]J dom

Xmin

(36)

Minin

= [ [1=Fy ()] am.
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The KS-1 gives the minimum for —/ . Having the expected value for the minimum, we have

E(M,,|8)= j m d(l—[l—FM (m)]”)

=m_— mel—[l—FM (m)]" dm

max

=m,+ mj [1 -F, (m)}n dm

Mipni

= mmin+ %f;f“*l (_ﬂ(mmax - mmin )) :

Taking into account that if f(m,, —m, )>log(2), the KS-1 must be replaced by EKS-1. We see that
the KS-1 function does not measure only the distance from the m,_, to the expected value for the
maximum, it is also a measure from the m,;, to the expected value for the minimum with negative
g.

We can see something more with these equations. Using (36), the expected value for the maxi-
mum can be considered as

min

E(M(r/) |ﬂ) = My~ TXI:FM (m] ﬁ)]n dm

=M™ J. [1 - F:W (m | _ﬂ)]n dm
=E(M(,,)|—ﬁ)-
In other words, the expected value curve for the maximum in the case of the positive S is equal

than the expected value curve for the minimum in the case of negative 3.
We saw that

E(MW) ‘ ’B) = Mo _%-]{;IKSﬂ (ﬁ(mmax M ))’

E(M(q) | _,B) =my,t jfnm_l (_ﬁ(mmax - mmin)) = E(M(,,) | ,B)

These equations give straightforwardly

E(M )| B) = ot (o — E (8, 1-B)) (37)

"This symmetry is easy to understand from Figure 3.
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8. Examples

Figure 5 shows the behavior of the expected value curve with different b-values. All the curves
start from the minimum the lower the value of b, the faster it reaches the maximum value.

0 5‘ 1‘0 1‘5 2‘0 2‘5 30
Figure 5. The expected value curves E (]V[ ( ”))

Figure 6 shows how the minimum and maximum follows the expected value curve in case
of 5=0.5. The green and red lines present the expected values curves for minimum and maxi-
mum, respectively. The expected value curve for minimum is calculated by (37). The blue lines
are acquired from the catalogues of the random samples. Each catalogue size 7 has generated a
sample of 100 events, where the mean of maximums and mean of minimums are calculated from.

Figure 6. Mean of minimum and maximum for sample size 100 and b=0.5
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Figure 7. Distribution for minimum and maximum estimators in case of b=0

By comparison between Figures 5 and 6 we realize that the curves £ (M o] 0.5) and E (]V[ | —0.5)
are mirror images at the point M =6.5.
Figure 7 shows some examples of the distribution for the maximum and minimum estimators

m,, and m_, at (30), where we set
E(M(m)) = fgi”(mk) >
ol 1
(M) =2
k=1

The first is a maximum estimator and the second is a mean estimator. The left column of figures
presents the distribution of the minimum estimators for cases of the catalogue size 2, 3, 5 and 10.
Similar way, the right column of figures presents the distribution of the maximum estimators for
cases of the catalogue size 2, 3, 5 and 10. The mount of catalogues in the sample are 10" . The mi-
nimum, maximum, mean and the median for the sample of the minimum estimator are

min (m, ) = 2.0005 min(m, ) = 2.0203
. max (m, ) =7.9991 _3. max (m, ) =7.9749
= mean (m, ) = 5.0005 =2 mean (m, ) =4.9997
median (m, ) =5.0008 median (m, ) =4.9997
min(m, )=2.1411 min(m, ) =2.4268
n=s max (m, ) =7.8534 n=10: max (m, ) =7.4739
mean (m, ) =5.0000 mean (m, ) =5.0001
median (m, ) =4.9999 median (m, ) =5.0002
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The same statistic for the maximum estimators gives

min(m, )=5.0013 min(m, ) =5.0040
n=2: max (m, ) =10.9995 =3 max (m, ) =9.9890
" |mean(m, )=7.9999 " | mean(m,)="7.9998
median (m, ) = 8.0000 median(m, ) =8.1077

min(m, )=5.1414 min(m, )=5.7128

n=s: max (m, ) =9.1539 n=10: max (m, ) =8.5374
" | mean(m, ) =8.0000 " | mean(m, ) =7.9999
median(m, ) =8.1121 median (m, ) =8.0737

We can see that the mean value gives the unbiased estimate for the maximum and minimum.
In case on the minimum estimator, the median gives also unbiased estimate for the minimum be-
cause the distribution is symmetric. Moreover, the distributions are bounded with the limits (33).

9. Conclusion

We have given a general definition for the Gutenberg-Richter distribution function and the new
series in the case of negative b -value. Moreover, we showed that if we have two bounded estimates
for the expected values, then S is bounded and at least one of limits, m, or m,_,_,is bounded. We
showed some results which gives the relation between positive and negative 3. This work gives
more perspective to understand the behavior of the Gutenberg-Richter distributed data.

max
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Appendix A

Reflection

In this section, we assume that 7e R, \N. Let start with formula (18)

f”EKs—l (ﬂ(mmax_mmi" )) = (exp[—ﬂ(mmax—mmm :| ) Z

k=1 77 ) (38)
. (-1 [(expl}ﬁ m,, )] ) (exp[fﬁ(mma;mmin):Ifl> ”]
+y .
k=0 k—-n
where « < g(m,, —m,_ )<-log(2).Ityields
1) e (e[ =lnmm)]-1) ]
kz:.‘ k+n +AZ§ k=n
(exp[—ﬂ(mmax—mmm )]—1)”
i - g( 1)77 +717 +(exp[ Blm, —m,, :I )Ug; - (exp[_ﬁ](crim:lx_mmin )]_1)
(exp[ ﬁ Mypax— mm :I 1)
o )k .
_ 2”; k-n) _l+i(1—exp[—ﬂ(’”max—mmm)])
(exp[—ﬂ mmax—mmm)]—l)” = k=n
Using the cosine series (Abramowitz and Stegun, 1972)
csc(z)=é+2zg%, z#kn, ke Z, (39)
we get
Loy ) :£+7r2(m])ii = wesc(m). (40)
n S -n m =1 (m])z -k’
If we set

l—exp[—x]= (1 —exp [—ﬂ(mmax— Mo )])71 ’
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we find
x=—log| 1— ! .
1- exp [_ﬁ(mlnax_ Myin ):I

Now, when < g(m,, —m,; )<—log(2), thenitis —log(2)<x<0 and we find

k

&-1( ) = 551 _log| 1 - 1 N (l_expl:_ﬁ(mmax_mmin):l)_ 1
=1 {lg[l 1—exp[—ﬁ(m.m—mmm)]D k-1 - @D

This shows that we could use the KS function also for the negative exponent. The results (40) and
(41) let us to write (38) as

S (B o)) zese(7n) s el 1- 1 .
% (ﬁ( - mm)) (exp[—ﬂ(mmx—mmm)]—l)” ’7+f7” [ Og[ l_exp[_ﬂ(mmax_mmin)]]]

=~

Similarly, we can find the reflection formulae for the KS functions. For the KS-1 is

«f;lflS7l (ﬁ(mmax_ mmin )) - ~}(;1K571 (ﬂ(mmax_ mmin ))

(1 —exp I:—,B(mnm— m, )]) (1 - exp[—ﬂ(mmax— m, )])k

k

:kz:{ k-n kzzl' k+n
a(i-ep[-B(m-m,,)]) @)
ko)

(e[ m)])

= T () =

1
= 7 " ) (7).

where cscx(z) is called as a Generalized Cosine function (GC). The GC has the limits

csc-tog(2) (2) = esc(2)

csce (z) =cot(z),
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because of (39) and (Abramowitz and Stegun, 1972)

cot(z 7+222 k2 -, z#knm kel

Hence, we can write

EKS-1 — KS-1| — 1
Iy (ﬂ(mmax_mmin))_f" [ log[l l—exp[—ﬂ(mmax—mmin )] ]]

43
4 zese(7n) e - (43)
(exp [—ﬂ ( m, —m. ):| _ 1)'7 Bl -mmin)

This is a reflection formula between EKS-1 and KS-1 functions. Moreover, because the EKS-1
and KS-1 are continuous functions, the subtraction

mesc(7n) e

(exp [_ﬂ(mmnx_ M ):| - 1)’] 8 ]

is bounded at the discontinuous points.

In a similar way as above, we can get the reflection formula for the KS-2 from (42)

I (B m ) = 155 (B (=)

=S (B )+ S (B 1)) h
=TTy (71):
Because
w7 Sl vener
k=1 k

where y is a Euler constant and H, is a General Harmonic number, the relation (44) gives a re-
flection formula of the Psi function (Abramowitz and Stegun, 1972)
1
y(l-n) =y/(1+77)—;+7rcot(m7)

=y (n)+mcot(mn).

Cuadernos de Ingenieria, nim. 13, 2021: 45:84

77
e-ISSN: 2545-7012



Mika Haarala Orosco

These reflection formulae (42)-(44) are not so nice in numerical calculus, even though they are
possible to use. They become unstable in the neighborhood of the discontinuous point and we
found that the formula (38) is quite powerful in the calculus having only one discontinuity point at

k=n,which we do not need to consider in the case of 7>20.

Recurrence

The recurrence formula for the KS-1 function can be attained as

(1-=exp[~B(mpu=my)])

M

L (B =my, ) =

~ k+n

_ i (1 - exp[—ﬂ(mmax‘ M )])k 1
re k+n n
i(l—exp[—ﬁ(mmax—mmm )])H _1
k=1 k+n-1 n

_ L (Blm—my,)) 1

1=exp[B(Mp— )] T

or we can write it as

S5 (Bl ) =(1-exp[ B, mm>]){ﬁ,“*‘(ﬁ(mm—mm))ﬁ}. (43)

For the KS-2 function, the recurrence formula can be found as

fr;KS?z (ﬂ(mmax_ My )) = ﬁ(mmax_ Mein ) _f77K87l (ﬁ(mmax_ My ))
S (B mn)) 1
1=exp[~B(m=m,,)] 7
_ _ _ ﬁ(mmax_ mmin ) - 4}(771?72 (ﬂ(mmax_ mmin )) l
_ﬂ( ‘max min) I—CXPI:—ﬂ My =M ):' n
B o[ P mas=m)] 7 () 1
1- exp[_ﬁ(mmax_ mmin )] 1 eXp[ ﬂ(mmax mm )] 77

= ﬂ(mmax_ Myin ) -

This gives the recurrence formula for the Psi function (and General Harmonic number)
fKS72 (oo) :fK572 (oo)-]—l P Hn :H,H +l
n n

n -1
1
& y(l+n) :y/(n)+;.
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The recurrence formula (45) gives an interesting result for the maximum. Let’s assume that
B>0. The formula (45) can be written now as

B (0] -0 B (51, )1

or another way as

Blmuw —E(M,,
(o (1, )))l 1 exp[~B(m - )] (46)

ﬂ(mmaX —E(M(”)))+;

In the same way we have

B m.. —E Mn
( ( ())) — = 1=exp[ (= )] 4

ﬂ(m —E(M(ml)))'*ﬁ

We see from (46) and (47), that
) Bl —E (41,

From this, we can find the maximum

0B (, [ B+ ) E(3,0) 1] - )5, ) B2
1+ Bn(n+1)(E(M,, ) -2E(H, ) E(Mml)))

If all expected values E (A7[(,H)) , E (1\7[ (”)) and E (1\7[ (m])) are bounded and the denominator is non-
zero, the right-hand side 1s bounded showing that the m,_  is bounded. This gives a condition

E(M( )+E(M”+]) q
2 2pn(n+1)

E(M(n));&

Cuadernos de Ingenieria, num. 13,2021: 45:84 | 79
e-ISSN: 2545-7012



Mika Haarala Orosco

for the bounded data. Thus, the upper bound of the data depends on the shape of the expected
value curve E(}V[(”)) ,NeR, .

Proof for the equation (19)

Let”s assume that ne N. Then (38) can be written as

(48)

=k:0 k—n +A:O—k+n
() i(_l) (exp[ - (n; My )]=1) o g(—;)

Firstly, we have

SEU SO0 5 O ™ s

o—k+tn Shk =a K =k

Secondly, we get

(_1),,i(—1) (exp[—ﬂ(’zmax—mmm)]—l) :(_1),,i(l—exp[— (rzmax—mmm)])

k=1

=—(-1)"log| 1- 1
=—(-1)"1 g[l l_exp[—ﬂ(mmax_mmin)]]

1V too] P[P )]
=—(-1)"1 g[exp[—ﬂ(mmax—mmm)]—lj

=(=1)" B(My= ) +(=1)" log (exp[ =B (= m,y, ) ]-1).
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Thirdly, we can rewrite the partial sum as

w1 (<) (exp[ =B (m—m ) ]-1 L (1) (exp[-B M= My ) | =1
Za()(p[ (k_ )]-1) =_z()(p[(k )J-1)

n k=1

Now, (48) yields

L (B(my=m, ) = = ;

n (1—exp| =B (M —m, '
ﬁ(mmax—m",in)—g,( il (k )

= s

(1 - exp[—ﬂ(mmx— Minin )])"

which was to proof.
Appendix B

We will show here an alternative way to solve the integral of the expected value for negative 5.
First of all, it is to change the variable as o = —x . It means that we flip the negative numbers to
positive part and vice versa. The integral gives

m'[ 1— exp[ ﬂsm mmin)]]]”dm_ nj_..[ l—exp[ﬂx mmm J

1=exp[ = (M =1,y 1=exp| B((—m ) (- mm))Jde
_ I[ 1—exp[ —B(X,y,, —x )]]] W

(((((

1- CXp[ ﬁ KXinax % mm)

Fmin

where x,=-m, and x, =-m_ . It means that x <x, , because m  <m_ . Multiplying the

min~ max max 'min ‘max

denominator and numerator by exp| B(Xy =X, ) | » We have

B ZXTX exp[ﬂ(xmax—xmin ):I—eXp[ﬂ(x—xm;n ):I ]ﬂ i

Ximin exp I:ﬂ xmax - xmin ] -1
:XT* exp[,ﬂ(x Xpnin ) ] 1+1—exp[ﬁ Xoin ) ] ”dx
Xmmin eXp [ﬂ max - min :I 1

g l—exp[ﬂ(x—xmm )] g
=||1- dx .
x;“m 1- exp[ﬂ(xmax ~ Xinin ):| ] !
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l—exp[ﬂ(x—xmm)]

<0
1= exp[ B (X =X )]

Because f<0,itis —1<-

when e < B(x,.— X ) < B(x—x,,)<0. Of course, this gives -1 at x__, but we do not consider it

because the integral is the same, if we integrate over [m,;, ,m,, | or [m,, ,m, [ . We can apply now
the Binomial Series (Abramowitz and Stegun, 1972) as

ol lmep[Be-na)] T wle, ofnY 1men[Ar-x.)] | )
x{n 1 1_eXP[.B(xmax—xmin)]] dx_x'[ {kzd( 1 [kj[l—exp[ﬂ(xmax—xmin)]]}d

e g l—exp[—(—ﬁ(x_xmin))] k e 49
2 [k] x{n{l—exp[_(‘ﬁ("max_xmi")ﬂ]d v

max

where

0 k k!

[’7]21’ [ﬂjz77(77-1)(77—2)~-'(77—k+1)

and £*7'(-B(x,.—x,,))=-B(x,—x, ). This is true, since

g l—exp[ﬂ(x—xmm ):| P
I- exp[ﬂ(xmax_ Xnin ):I max  “‘min

Fmin

but also because of

(1=exp[ B (%= X )])k

ks N
fo ( ﬂ(-xmax mm ) ﬂ']%m;

B k+n
| (1o (s
ey ;
= %log(l—(l—exp[ﬂ(xmax—xmin )]))
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The terms of the alternating series (49) are all positive term series of KS-1 functions, because of

we have S(x,,.—x..)<0.If we consider that x,, —x, . =m_ —m_ ,we canwrite the final result as

Mgy 1—eXp[_/B(9ﬂ—mmin):| ﬂdfm:_l” Ny n Ks-1(_ " —m
1—exp[—ﬂ(mmax_mmmﬂ Y1) [k] =P =) (50)

" k=0

It 1s interesting to see that we could carry the calculus from negative side to positive side. An-
yway, this series is not so desirable because the magnitude of the binomial factor (49) increases
quickly, and then decreases quickly, especially when 7 is big. Anyway, this relation (50) can be
used only for small 7 because of the behavior of the binomial factor, but also because of the time
to solve each KS function.

"This kind of behavior of the factors is a problem. The binomial factor produces an overflow in
the double precision system when 77 becomes big, for example,

1030
( 515 ]> 1.798E+308 (= maximum value in double precision)

meanwhile,

1030)_(1030))_,
0 | |1030]
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